663 research outputs found

    The J_{eff}=1/2 insulator Sr3Ir2O7 studied by means of angle-resolved photoemission spectroscopy

    Full text link
    The low-energy electronic structure of the J_{eff}=1/2 spin-orbit insulator Sr3Ir2O7 has been studied by means of angle-resolved photoemission spectroscopy. A comparison of the results for bilayer Sr3Ir2O7 with available literature data for the related single-layer compound Sr2IrO4 reveals qualitative similarities and similar J_{eff}=1/2 bandwidths for the two materials, but also pronounced differences in the distribution of the spectral weight. In particuar, photoemission from the J_{eff}=1/2 states appears to be suppressed. Yet, it is found that the Sr3Ir2O7 data are in overall better agreement with band-structure calculations than the data for Sr2IrO4.Comment: 5 pages, 3 figure

    Simulation of effect of climate, soils and management on N2O emission from grassland

    Get PDF
    Nitrous oxide (N2O) is a potent greenhouse gas with a high contribution from agricultural soils and emissions that depend on soil type, climate, crops and management practices. The N2O emissions therefore need to be included as an integral part of environmental assessment of agricultural production systems. A dynamical algorithm for N2O production and emission from agricultural soils was developed and included in the FASSET whole-farm model. The model simulated carbon and nitrogen (N) turnover on a daily basis. Both nitrification and denitrification was included in the model as sources for N2O production, and the N2O emissions were simulated to depend on soil microbial and physical conditions. The model was tested on experimental data of N2O emissions from grasslands in UK, Finland and Denmark, differing in climatic conditions, soil properties and management. The model simulated the general time course of N2O emissions and captured the observed effects of fertiliser and manure management on emissions. However, emissions from a soil with high clay content were overestimated with the model. Scenario analyses for grazed and cut grasslands were conducted to evaluate the effects of soil type, climatic conditions, grassland management and N fertilisation on N2O emissions. The soils varied from sandy to sandy loam and the climatic variation was taken to represent the climatic variation within Denmark. N fertiliser rates were varied from 0 to 500 kg N ha-1. The simulated N2O emissions showed a non-linear response to increasing N rates with increasing emission factors at higher N rates. The simulated emissions increased with increasing soil clay contents. There was no effect of climatic conditions. Emissions were slightly higher from grazed grasslands compared with cut grasslands at similar rates of total N input (fertiliser and animal excreta). The results indicate higher emission factors and thus higher potentials for reducing N2O emissions for intensively grazed grasslands on fine textured soils than for extensive cut based grasslands on sandy soils

    The Rise Times of High and Low Redshift Type Ia Supernovae are Consistent

    Get PDF
    We present a self-consistent comparison of the rise times for low- and high-redshift Type Ia supernovae. Following previous studies, the early light curve is modeled using a t-squared law, which is then mated with a modified Leibundgut template light curve. The best-fit t-squared law is determined for ensemble samples of low- and high-redshift supernovae by fitting simultaneously for all light curve parameters for all supernovae in each sample. Our method fully accounts for the non-negligible covariance amongst the light curve fitting parameters, which previous analyses have neglected. Contrary to Riess et al. (1999), we find fair to good agreement between the rise times of the low- and high-redshift Type Ia supernovae. The uncertainty in the rise time of the high-redshift Type Ia supernovae is presently quite large (roughly +/- 1.2 days statistical), making any search for evidence of evolution based on a comparison of rise times premature. Furthermore, systematic effects on rise time determinations from the high-redshift observations, due to the form of the late-time light curve and the manner in which the light curves of these supernovae were sampled, can bias the high-redshift rise time determinations by up to +3.6/-1.9 days under extreme situations. The peak brightnesses - used for cosmology - do not suffer any significant bias, nor any significant increase in uncertainty.Comment: 18 pages, 4 figures, Accepted for publication in the Astronomical Journal. Also available at http://www.lbl.gov/~nugent/papers.html Typos were corrected and a few sentences were added for improved clarit

    Radiative forcing in the 21st century due to ozone changes in the troposphere and the lower stratosphere

    Get PDF
    Radiative forcing due to changes in ozone is expected for the 21st century. An assessment on changes in the tropospheric oxidative state through a model intercomparison ("OxComp'') was conducted for the IPCC Third Assessment Report (IPCC-TAR). OxComp estimated tropospheric changes in ozone and other oxidants during the 21st century based on the "SRES'' A2p emission scenario. In this study we analyze the results of 11 chemical transport models (CTMs) that participated in OxComp and use them as input for detailed radiative forcing calculations. We also address future ozone recovery in the lower stratosphere and its impact on radiative forcing by applying two models that calculate both tropospheric and stratospheric changes. The results of OxComp suggest an increase in global-mean tropospheric ozone between 11.4 and 20.5 DU for the 21st century, representing the model uncertainty range for the A2p scenario. As the A2p scenario constitutes the worst case proposed in IPCC-TAR we consider these results as an upper estimate. The radiative transfer model yields a positive radiative forcing ranging from 0.40 to 0.78 W m(-2) on a global and annual average. The lower stratosphere contributes an additional 7.5-9.3 DU to the calculated increase in the ozone column, increasing radiative forcing by 0.15-0.17 W m(-2). The modeled radiative forcing depends on the height distribution and geographical pattern of predicted ozone changes and shows a distinct seasonal variation. Despite the large variations between the 11 participating models, the calculated range for normalized radiative forcing is within 25%, indicating the ability to scale radiative forcing to global-mean ozone column change

    Helsetjenesten sett fra pasientens stüsted: Pasientforløp ved langvarige og komplekse behov i Troms- og Ofoten

    Get PDF
    Despite the many positive patient experiences in this study, we have also found serious mishaps, disorder and discontinuity of care. In long-term conditions, the patient's own efforts are crucial for treatment success, but there is no systematic identification and support of patients’ own resources. All collaboration between professionals concern patients, yet the health care system continues to ignore that the patient is the hub of all interaction and coordination. Quality of care for patients with long term conditions include 1) the correct diagnosis and appropriate multidisciplinary treatment 2) coordinated and predictable health care, and 3) support for self-care and self-management. We need a health service, which puts what matters to patients first, and then secondly uses diagnostic interventions as tools to promote the goals that matter to patients. This requires a significant cultural change, professional development and system changes. Health professionals, who are patient-centered, must feel that they are working with and not against the system. We need a visionary and bold long-term commitment from a management willing to change both organizational, cultural and economic incentives in support of the good patient pathway

    Spontaneous and deliberate future thinking: A dual process account

    Get PDF
    © 2019 Springer Nature.This is the final published version of an article published in Psychological Research, licensed under a Creative Commons Attri-bution 4.0 International License. Available online at: https://doi.org/10.1007/s00426-019-01262-7.In this article, we address an apparent paradox in the literature on mental time travel and mind-wandering: How is it possible that future thinking is both constructive, yet often experienced as occurring spontaneously? We identify and describe two ‘routes’ whereby episodic future thoughts are brought to consciousness, with each of the ‘routes’ being associated with separable cognitive processes and functions. Voluntary future thinking relies on controlled, deliberate and slow cognitive processing. The other, termed involuntary or spontaneous future thinking, relies on automatic processes that allows ‘fully-fledged’ episodic future thoughts to freely come to mind, often triggered by internal or external cues. To unravel the paradox, we propose that the majority of spontaneous future thoughts are ‘pre-made’ (i.e., each spontaneous future thought is a re-iteration of a previously constructed future event), and therefore based on simple, well-understood, memory processes. We also propose that the pre-made hypothesis explains why spontaneous future thoughts occur rapidly, are similar to involuntary memories, and predominantly about upcoming tasks and goals. We also raise the possibility that spontaneous future thinking is the default mode of imagining the future. This dual process approach complements and extends standard theoretical approaches that emphasise constructive simulation, and outlines novel opportunities for researchers examining voluntary and spontaneous forms of future thinking.Peer reviewe

    Open-Label, Multi-Dose, Pilot Safety Study of Injection of OnabotulinumtoxinA Toward the Otic Ganglion for the Treatment of Intractable Chronic Cluster Headache

    Get PDF
    BACKGROUND: The otic ganglion (OG) provides parasympathetic innervation to the cerebral circulation and cranial structures and may be involved in the pathophysiology of trigeminal autonomic headaches. This structure has never been targeted in any headache disorder. OBJECTIVE: To investigate the safety of injecting onabotulinumtoxin A (BTA) toward the OG in 10 patients with intractable chronic cluster headache and to collect efficacy data. METHODS: A total of 10 patients with chronic cluster headache were enrolled in this open-label, multi-dose pilot safety study. All patients were recruited and treated on an out-patient basis at St Olav's University Hospital (Norway). In 5 patients each, the OG was the injection target with 12.5 IU of BTA or 25 IU, respectively. The primary outcome measure was adverse events (AEs) and the main secondary outcome was the number of attacks per week measured at baseline and in the second month following injection. RESULTS: For the primary endpoint, we analyzed data for all 10 patients. There were a total of 17 AEs in 6 of the 10 patients. All AEs were considered mild and disappeared by the end of follow-up. The median number of attacks per week at baseline was 17.0 [7.8 to 25.8] vs 14.0 [7.3 to 20.0] in the second month following injection; difference: 3 (95%CI: -0.3 to 7.9), P = .063. CONCLUSIONS: Injection with BTA toward the OG appears to be safe. We did not find a statistically significant reduction in the number of attacks per week at month 2 after injection compared to the baseline. This study suggests that the OG is not an important target for the treatment of chronic cluster headache. A future study employing more precise targeting of the OG may be indicated

    Why are we not flooded by involuntary thoughts about the past and future? Testing the cognitive inhibition dependency hypothesis

    Get PDF
    © The Author(s) 2018In everyday life, involuntary thoughts about future plans and events occur as often as involuntary thoughts about the past. However, compared to involuntary autobiographical memories (IAMs), such episodic involuntary future thoughts (IFTs) have become a focus of study only recently. The aim of the present investigation was to examine why we are not constantly flooded by IFTs and IAMs given that they are often triggered by incidental cues while performing undemanding activities. One possibility is that activated thoughts are suppressed by the inhibitory control mechanism, and therefore depleting inhibitory control should enhance the frequency of both IFTs and IAMs. We report an experiment with a between-subjects design, in which participants in the depleted inhibition condition performed a 60-min high-conflict Stroop task before completing a laboratory vigilance task measuring the frequency of IFTs and IAMs. Participants in the intact inhibition condition performed a version of the Stroop task that did not deplete inhibitory control. To control for physical and mental fatigue resulting from performing the 60-min Stroop tasks in experimental conditions, participants in the control condition completed only the vigilance task. Contrary to predictions, the number of IFTs and IAMs reported during the vigilance task, using the probe-caught method, did not differ across conditions. However, manipulation checks showed that participants’ inhibitory resources were reduced in the depleted inhibition condition, and participants were more tired in the experimental than in the control conditions. These initial findings suggest that neither inhibitory control nor physical and mental fatigue affect the frequency of IFTs and IAMs.Peer reviewedFinal Published versio

    Topological crystalline insulator states in Pb(1-x)Sn(x)Se

    Full text link
    Topological insulators are a novel class of quantum materials in which time-reversal symmetry, relativistic (spin-orbit) effects and an inverted band structure result in electronic metallic states on the surfaces of bulk crystals. These helical states exhibit a Dirac-like energy dispersion across the bulk bandgap, and they are topologically protected. Recent theoretical proposals have suggested the existence of topological crystalline insulators, a novel class of topological insulators in which crystalline symmetry replaces the role of time-reversal symmetry in topological protection [1,2]. In this study, we show that the narrow-gap semiconductor Pb(1-x)Sn(x)Se is a topological crystalline insulator for x=0.23. Temperature-dependent magnetotransport measurements and angle-resolved photoelectron spectroscopy demonstrate that the material undergoes a temperature-driven topological phase transition from a trivial insulator to a topological crystalline insulator. These experimental findings add a new class to the family of topological insulators. We expect these results to be the beginning of both a considerable body of additional research on topological crystalline insulators as well as detailed studies of topological phase transitions.Comment: v2: published revised manuscript (6 pages, 3 figures) and supplementary information (5 pages, 8 figures
    • …
    corecore